

Newton's Academy

PHYSICS

Time: 3 Hrs.

Max. Marks: 70

General Instructions:
The question paper is divided into four sections:

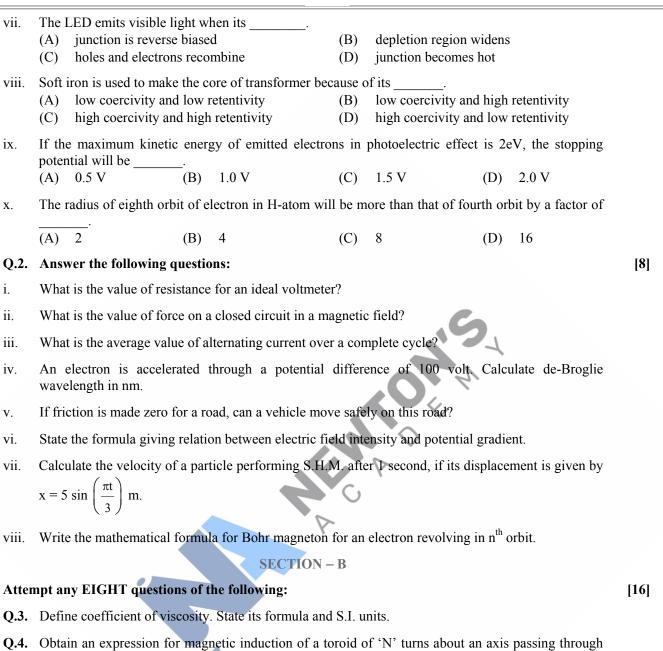
- (1) Section A: Q. No. 1 contains Ten multiple choice type of questions carrying One mark each. Q. No. 2 contains Eight very short answer type of questions carrying One mark each.
- (2) Section B: Q. No. 3 to Q. No. 14 contain Twelve short answer type of questions carrying Two marks each. (Attempt any Eight).
- (3) Section C: Q. No. 15 to Q. No. 26 contain Twelve short answer type of questions carrying Three marks each. (Attempt any Eight).
- (4) Section D: Q. No. 27 to Q. No. 31 contain Five long answer type of questions carrying Four marks each. (Attempt any Three).
- (5) Use of the log table is allowed. Use of calculator is **not** allowed.
- (6) Figures to the right indicate full marks.
- (7) For each multiple choice type of question, it is mandatory to write the correct answer along with its alphabet. e.g., (a)....../(b)....../(c)....../(d)...... No marks(s) shall be given, if <u>ONLY</u> the correct answer or the alphabet of the correct answer is written. Only the first attempt will be considered for evaluation.

(8) Physical Constants:

- (i) $h = 6.63 \times 10^{-34} \text{ Js}$
- (ii) $c = 3 \times 10^8 \text{ m/s}$
- (iii) $\pi = 3.142$
- (iv) $g = 9.8 \text{ m/s}^2$
- (v) $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{ Nm}^2$
- (vi) $\mu_0 = 4\pi \times 10^{-7} \text{ Wb} / \text{A-m}$

SECTION - A

Q.1. Select and write the correct answers for the following multiple choice type of questions:


i. If 'n' is the number of molecules per unit volume and 'd' is the diameter of the molecules, the mean free path ' λ ' of molecules is

	(A) $\sqrt{\frac{2}{\pi \text{ nd}}}$	(B)	$\frac{1}{2 \pi n d^2}$	(C)	$\frac{1}{\sqrt{2} \pi n d^2}$	(D)	$\frac{1}{\sqrt{2 \pi nd}}$
ii.	The first law of thermo	odynam	ics is consistent wit	th the law	of conservation of	·	
	(A) momentum	(B)	energy	(C)	mass	(D)	velocity
iii.	$Y = \overline{A + B}$ is the Boole	ean expi	ression for	_·			
	(A) OR - gate	(B)	AND - gate	(C)	NOR - gate	(D)	NAND - gate
iv.	The property of light	which	remains unchanged	d when it	travels from one	mediu	im to another is
	(A) velocity	(B)	wavelength	(C)	amplitude	(D)	frequency
V.	If a circular coil of 100 to the magnetic field of				-	-	1 1
	(A) 1 Wb		50 Wb		100 Wb		
vi.	If ' θ ' represents the a container then	ngle of 	contact made by a	a liquid w	which completely w	wets th	e surface of the
	(A) $\theta = 0$	(B)	$0 < \theta < \frac{\pi}{2}$	(C)	$\theta = \frac{\pi}{2}$	(D)	$rac{\pi}{2} < \theta < \pi$

[10]

Practice Paper-2

- **Q.5.** State and prove principle of conservation of angular momentum.
- **Q.6.** Obtain an expression for equivalent capacitance of two capacitors C_1 and C_2 connected in series.
- **Q.7.** Explain, why the equivalent inductance of two coils connected in parallel is less than the inductance of either of the coils.
- Q.8. How will you convert a moving coil galvanometer into an ammeter?
- **Q.9.** A 100 Ω resistor is connected to a 220 V, 50 Hz supply. Calculate:

its centre and perpendicular to its plane.

- i. r.m.s. value of current and
- ii. net power consumed over the full cycle
- **Q.10.** A bar magnet of mass 120 g in the form of a rectangular parallelepiped, has dimensions l = 40 mm, b = 100 mm and h = 80 mm, with its dimension 'h' vertical, the magnet performs angular oscillations in the plane of the magnetic field with period π seconds. If the magnetic moment is 3.4 Am², determine the influencing magnetic field.

- Q.11. Distinguish between free vibrations and forced vibrations (Two points).
- **Q.12.** Compare the rate of loss of heat from a metal sphere at 827°C with rate of loss of heat from the same at 427°C, if the temperature of surrounding is 27°C.
- **Q.13.** An ideal mono-atomic gas is adiabatically compressed so that its final temperature is twice its initial temperature. Calculate the ratio of final pressure to its initial pressure.
- **Q.14.** Disintegration rate of a radio-active sample is 10^{10} per hour at 20 hours from the start. It reduces to 5×10^9 per hour after 30 hours. Calculate the decay constant.

SECTION – C

Attempt any EIGHT questions of the following:

- Q.15. Derive laws of reflection of light using Huygens' principle.
- Q.16. State postulates of Bohr's atomic model.
- Q.17. Define and state unit and dimensions of :
- i. Magnetization
- ii. Magnetic susceptibility
- Q.18. With neat labelled circuit diagram, describe an experiment to study the characteristics of photoelectric effect.
- Q.19. Explain the use of potentiometer to determine internal resistance of a cell.
- Q.20. Explain the working of n-p-n transistor in common base configuration.
- Q.21. State the differential equation of linear S.H.M. Hence, obtain expression for :

i. acceleration

- ii. velocity
- **Q.22.** Two tuning forks of frequencies 320 Hz and 340 Hz are sounded together to produce sound wave. The velocity of sound in air is 326.4 m/s. Calculate the difference in wavelengths of these waves.
- **Q.23.** In a biprism experiment, the fringes are observed in the focal plane of the eye-piece at a distance of 1.2 m from the slit. The distance between the central bright band and the 20th bright band is 0.4 cm. When a convex lens is placed between the biprism and the eye-piece, 90 cm from the eye-piece, the distance between the two virtual magnified images is found to be 0.9 cm. Determine the wavelength of light used.
- **Q.24.** Calculate the current flowing through two long parallel wires carrying equal currents and separated by a distance of 1.35 cm experiencing a force per unit length of 4.76×10^{-2} N/m.
- **Q.25.** An alternating voltage given by $e = 140 \sin (314.2 t)$ is connected across a pure resistor of 50 Ω . Calculate :
- i. the frequency of the source
- ii. the r.m.s current through the resistor
- Q.26. An electric dipole consists of two opposite charges each of magnitude 1 μC, separated by 2 cm. The dipole is placed in an external electric field of 10⁵ N/C. Calculate the :
- i. maximum torque experienced by the dipole and
- ii. work done by the external field to turn the dipole through 180°.

[24]

SECTION – D

Attempt any THREE questions of the following:

Q.27. On the basis of kinetic theory of gases obtain an expression for pressure exerted by gas molecules enclosed in a container on its walls.

Q.28.

- i. Derive an expression for energy stored in the magnetic field in terms of induced current.
- ii. A wire 5 m long is supported horizontally at a height of 15 m along east-west direction. When it is about to hit the ground, calculate the average e.m.f. induced in it. $(g = 10 \text{ m/s}^2)$

Q.29.

- i. Derive an expression for the work done during an isothermal process.
- ii. 104 J of work is done on certain volume of a gas. If the gas releases 125 kJ of heat, calculate the change in internal energy of the gas.

Q.30.

- i. Obtain the relation between surface energy and surface tension.
- ii. Calculate the work done in blowing a soap bubble to a radius of 1 cm. The surface tension of soap solution is 2.5×10^{-2} N/m.
- **Q.31.** Derive expressions for linear velocity at lowest position, mid-way position and the top-most position for a particle revolving in a vertical circle, if it has to just complete circular motion without string slackening at top.

